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Abstract—The scale and complexity of distributed systems
have steadily grown in the recent years. Management of this
complexity has drawn attention towards systems that can au-
tomatically maintain themselves throughout different scenarios.
These systems have been described with many terms, such as
self-healing, self-stabilizing, self-organizing, self-adaptive, self-
optimizing, self-protecting, and self-managing. These attributes
are collectively referred to as self-* properties. Even with the
increased focus on self-* research, there exists much ambiguity
in the perceptions of the different self-* properties. In this paper,
we propose to resolve the ambiguity by introducing a template
for defining self-* properties, and use it to offer formal definitions
of existing self-* terms. We then present some observationsabout
the relationships among the different self-* properties. Finally,
we propose two new self-* properties that are meaningful in this
space.

Keywords-Masking and non-masking tolerance; safety and
liveness properties; self-healing; self-stabilizing; self-organizing;
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I. I NTRODUCTION

The recent past has been a productive time for distributed
systems research. The lowering cost of components has made
distributed computing more practical, and large systems have
witnessed significant growth. Furthermore, the Internet’sevo-
lution into a common staple in households today has created a
demand for other types of distributed systems of a tremendous
scale, such as peer-to-peer systems and cloud computing.

As the scale and complexity of distributed applications have
grown, their management also has become more challenging.
For instance, the recent trend of cloud computing relies
heavily on large clusters of servers. Amazon’s EC2 [1] pro-
vides huge amounts of computing power to many customers,
including imageloop.com [2] (a photo-sharing website) and
SnappyFingers [3](a search engine). These applications expect
reliable and fast service at low cost, even though their server
instances may be running on a complex system containing
hundreds of computers. Skype delivers audio and video to
nearly 200 million users over peer-to-peer networks, and is
clearly a success story. It is not hard to imagine that, without
sophisticated techniques, managing this level of complexity
to provide reliable performance for so many customers would
become next to impossible.

To relieve some of the burden of complexity, the current
trend is towards maintaining at least some aspect of oper-
ation automatically, without human intervention. These sys-
tems have been called “self-healing,” “self-protecting,”“self-

stabilizing,” “self-organizing,” and more. Collectively, such
properties are referred to as “self-*” properties. Autonomic
computing, an initiative started by IBM in 2001, is a vision
to create systems that implement a collection of these self-*
properties [4], [5]. However, in spite of the increased attention,
there exists considerable ambiguity about the perception of
the precise meaning of these properties. Such ambiguities are
likely to become a troublesome barrier in formalizing research
in this area. This paper attempts to resolve these ambiguities.

Our contribution is threefold. First, we create a common
framework to define and analyze the various self-* proper-
ties, and map the current definitions into this framework.
Second, on the basis of this framework, we explore the
inter-relationship among the various self-* properties, along
with appropriate examples. Finally, we use the framework to
introduce two new self-* properties that can exist in this space.

The paper has six sections. Section 2 introduces the model
and the notations. Section 3 casts the different known self-
* properties into a common framework. Section 4 introduces
two new self-* properties. Examples of how various self-*
properties are related to one another are discussed in section
5. Finally, Section 6 contains some concluding remarks.

II. T HE MODEL

The system under consideration consists ofn processes
(n ≥ 1), and the graphG = (V,E) represents its topology,
with verticesV representing processes, and edgesE repre-
senting its communication links. For each processi ∈ V , let
N(i) represent the neighbors ofi: thus (i, j) ∈ E ⇔ j ∈
N(i) ∧ i ∈ N(j). Each processi executes a program that
consists of one or more guarded actionsg → A, where g

is a predicate involving the variables ofi and those of its
neighbors, andA is an action that updates the local states(i)
of i. The global stateS (also called aconfiguration) consists of
the local states of all the processes. Acomputationis a finite or
infinite sequence of global states that satisfies two properties:
(a) if S and S′ are two consecutive states in the sequence,
then there exists a processi such thati has an enabled guard
in S and execution of the corresponding action results in the
stateS′, and (b) if the sequence is finite, then in the last state
of the sequence, no process has an enabled guard.

Divide the set of of all possible actions into two classes:
internal and external. An internal action is a system action
as described in the previous paragraph. An external action
belonging to the setF , on the other hand, is an action caused



by an adversary, and has a wider scope. It can change the
environmentR: the environment consists of parameters that
the system can only read, but cannot modify using the internal
actions. External actions include the set of internal actions
and can modify any process’ internal state, but they can
also crash processes, induce failures by taking ad-hoc actions,
change the network topology, put the system in an arbitrary
configuration, launch security attacks, or change user demands
for service from the system, etc. External actions that affect
the performance of a system are also calledfault actionsor
adversarial actions.

The correctness of a system is specified by itssafetyand
livenessproperties [6]. Informally, a safety property implies
that “ bad things never happen to the system,” and is char-
acterized by an invariantP . A liveness property says that
“good happens eventually happen,” examples are progress,
termination, or convergence to a desired configuration. While
the violation of a safety property can be determined by
examining a finite prefix of the computation, the violation of
the liveness property cannot determined in a similar manner.
A system is in alegal or consistentconfiguration w.r.t. a
given environmentR, when the corresponding safety predicate
P holds. An external or adversarial action can affect the
safety or liveness properties of a system. Based on how these
properties are affected and how they are restored, one can
define four different types of tolerances [7] (1) masking, (2)
non-masking, (3) fail-safe, and (4) graceful degradation.A
system exhibitsmasking tolerancew.r.t. an actionC, when
both safety and liveness properties are unaffected byC. In
non-masking tolerance, the safety property is violated by some
external action inF , but not the liveness, and eventually the
safety property is restored. A system isfail-safew.r.t. an action
in F , if the liveness properties are compromised but not its
safety properties. Finally, in agracefully degradingsystem,
the external action affects the safety properties (but not its
liveness), and the system eventually recovers to a configuration
that satisfies a weaker predicateP ′ (P ⊂ P ′) that is acceptable
to the application.

III. T HE SELF-* FRAMEWORK

Based on the model developed in Section 2, we analyze the
different self-* properties.

A. Self-management

Self-management is a vision. It describes a system that has
at least one self-* property [8]. It can be used as a generic
property that encompasses the various classes of “autonomic”
behavior. Self-managing, then, can be thought of as the parent
or superclass of all self-* properties. The definition of self-
management will serve as a framework for specifying other
self-* properties.

Definition 1. A system is self-managing with respect to a
subset of external actionsC ⊆ F , if it automatically (without
human intervention) maintains, improves, or restores the safety
propertyP following the occurrence of actions inC.

The definition is a loose one. It does not specify if the
tolerance is masking or non-masking, nor does it state anything
about whether a gracefully degraded end configuration is
acceptable. It is also silent about the time needed to recover
(for non-masking tolerance), as long as recovery is guaranteed
in a bounded number of steps. Such additional considerations
will lead to a further refinement of the above definition.

Refinement occurs by modifying at least one of the three
parts of the definition. The first part is the external actions
C the system responds to. The second portion is whether
the system maintains, improves, or restores some property
P . Obviously, improving a property implies the presence of
some objective function (the termimprove is used to mean
improving a function up to its maximum, or minimum, or the
most desirable value). The final part of the self-management
template is the propertyP being maintained, improved, or
restored. By refining these three components, other self-*
properties can be defined.

B. Self-stabilization

Self-stabilization was first introduced in 1974 by Dijkstra
[9], and it has been an active research topic [10] for many
years. It is a form of non-masking tolerance that refers to the
ability of a system to spontaneously recover from any initial
configuration.

Definition 2. A system is self-stabilizing if, (1) starting from
an arbitrary initial configuration, it recovers to a legal con-
figuration where its safety predicateP holds, and (2) remains
in that configuration thereafter.

The arbitrary configurations can be generated by ad-hoc
initialization, transient failures caused by any externalactions
in F . Such failures however, are ordinarily not expected to
affect the program codes of the different processes. Correct so-
lutions argue why the external actions cannot create deadlocks
o livelocks, and demonstrate the convergence property (from
any configuration to a legal configuration) and the closure
property (of the legal configurations). Code corruption leads
to byzantine behavior (that is irreversible and needs to be
masked), and certain forms of security attacks are capable
of modifying program codes. However, most self-stabilizing
systems do not address it. That said, work has been done
on the feasibility of self-stabilization where external actions
include the ability to corrupt the program code [11]

External actions can also crash processes. However, to
deal with crash failures, we need to adopt a broader view
of a self-stabilizing system by transforming it into aself-
adaptivesystem. A self-adaptive system reacts to changes in
the environment by changing its safety predicate accordingly
[12].

Lemma 1. Let{R1, R2, . . . , Rm} be a set of boolean environ-
ment variables, and letPi be the desired safety predicate when
the environmentRi holds. Then the self-adaptive system is
equivalent to a self-stabilizing system, for which the predicate



P =
m∨

i=1

(Ri ∧ Pi)

will hold.

One can represent the crash of a processi by a boolean
crashed(i), which is an environment variable. If an external
action setscrashed(i) to true, then the system has to recover
to another predefined legal configuration. Using Lemma 1,
this can be accommodated into the extended view of a self-
stabilizing system.

Dolev [10] presents a large number of self-stabilization
algorithms for various applications.

C. Self-healing

Self-healing is mostly viewed as a form ofnon-masking
tolerance from a limited subset of the set of possible exter-
nal actions. However, self-healing does not exclude masking
tolerance, either. Self-healing systems have been described in
various articles like [13]–[16]. However, aconsistentformal
definition of self-healing is lacking.

Definition 3. A system is said to be self-healing with respect
to a subset of external actionsC ⊆ F if occurrence of actions
in C causes at most a temporary violation of the system’s
safety propertyP .

Self-healing is focused on maintaining or restoring a sys-
tem’s safety properties. When the safety property is violated,
healing may take an arbitrary but finite amount of time.
However, unlike self-stabilization, most self-healing systems
guarantee healing from a limited subset of all external ac-
tions. This is in contrast with a self-stabilizing system that
guarantees recovery fromall actions that perturbs its global
state. However, crash or Byzantine failures are ordinarilynot
factored into the definition of a self-stabilizing system, while
a self-healing system may cater to such failures.

A self-healing system often exhibits a degraded level of
performance when the external action causes a crash failure.
An example is a peer-to-peer network that is resilient to
external actions causing the removal of nodes [17]. Assuming
that at most one node is removed at a time, the solution
promises that the network diameter will never be more than a
factor ofO(log∆) larger than that of the original network (∆
is the maximum degree of a node in the network), and that
no node will experience an increase in degree greater than
three. Such changes will cause a limited degradation of the
performance.

The choice of the set of actions w.r.t which self-healing
is desirable will depend on the application. The larger the
set is, the better is the self-healing property. Recall thatthe
Skype network, which has in-built ability to self-heal from
minor failures. However, on Thursday, 16th August 2007,
Skype became unstable and suffered a critical disruption. It
was triggered by a massive restart of the users’ computers
across the globe within a very short time period (as they
re-booted after receiving a routine set of patches through

Windows Update). This caused a flood of log-in requests,
which, combined with the lack of network resources, prompted
a chain reaction that had a critical impact.1

Although most self-healing solutions are non-masking or
reactive in nature, there are masking or proactive versions
too. They are better known aspredictive self-healing. These
systems anticipate failures from symptoms of erratic behavior,
but protects the system from a catastrophic service disruption
by internally restarting certain modules and masking the
failure from the user. The idea of internally restarting a system
via reboot tree was proposed by Candea and Fox [18]. Sun
Microsystems’s Solaris operating system (and several other
operating systems) have this facility.

Interestingly, when the external action alters the network
topologyG via the addition or deletion of nodes, the system
is calledself-organizinginstead of self-healing.

D. Self-organization

Although self-organization is a widely used term across
various scientific disciplines, in computer science,self-
organizationis a self-* property that has received increased
attention largely due to the increased interest in peer-to-peer
systems, ad-hoc networks, and cooperating robot systems or
swarm robotics. Self-organization is a non-masking form of
tolerance. Several formal definitions of self-organization exist,
but with slightly differing views. One requires the system to
maintain, or monotonically improve a function value involving
the neighbors of the joining or the departing process in-
between process joins and leaves [19]. A second definition
states that a self-organizing system is a self-stabilizingsystem
that recovers insub-linear timefollowing each join or leave,
and that process joins and leaves cause only local changes
to the system [20]. The time constraint imposed in [20] is
not universally accepted, but its motivation is to make the
algorithm scalable, so we will include it in our definition.
Another issue is the number of concurrent join or leave
operations supported by the algorithm. Our definition will
reflect the strongest view.

Definition 4. A system withn processes is self-organizing, if it
maintains, improves, or restores one or more safety properties
P following the occurrence of a subset of external actions
Cj ⊂ F involving the concurrent join of up ton processes, or
the concurrent departure of up ton

2
processes, with a sublinear

recovery time per join or leave.

As an example of self-organization, consider the peer-to-
peer system Chord [21]. It provides guarantees on recovery
from concurrent failure happening with probability1

2
, and

efficient lookups even when the size of the system doubles.

E. Self-protection

Self-protection traditionally implies masking fault tolerance
w.r.t external actions that have malicious intent, by applying

1See Villu Arak: What happened on August 16.
http://heartbeat.skype.com/2007/08/whathappenedon august16.html



trust mechanisms or privacy policies to secure the system and
its data [22], [23]. This leads to the following definition:

Definition 5. A system is self-protecting, if it continuously
maintains a safety propertyP in the presence of a subset of
external actions with malicious intent,Cm ⊂ F .

This definition is quite generic, and similar to the self-
management template. The safety property can be any predi-
cate related to the integrity of the system and its data. As with
many definitions, the choice of the malicious external actions
and the safety properties that are safeguarded, are critical to
judging the merit of an implementation of self-protection.

As an example of a self-protecting system, consider the
OceanStore archival storage built on a peer-to-peer net-
work [24]. OceanStore provides a large storage system, and
ensures that data is available and secure, regardless of machine
failures and attempted data theft. In this sense, OceanStore is
self-protecting. The predicate it maintains is data availability,
and compliance to access constraints for each file, and the
actions are machine failures or access control violations.
Karlof and Wagner [25] described novel ways of launching
attacks on wireless sensor networks, along with methods of
protecting the system from such attacks.

F. Self-optimization

While the previous self-* properties are concerned with
the maintenance or restoration of a safety predicate, self-
optimization focuses on the value of anobjective functionas
the system property, and aims at maximizing (or minimizing)
this objective function. This matches the intuitive notionof
optimization – striving for improvement whenever possible.
The following definition captures this natural idea.

Definition 6. A system is self-optimizing if, starting from an
arbitrary initial configuration, it improves (i.e. maximizes or
minimizes as appropriate) the value of a predefined objective
function of its global state.

The goal is to maintain the system in an optimal configura-
tion. It is possible that the system was sub-optimal at the time
of creation, or the system started in an optimal configuration,
but a set of external actions made it sub-optimal.

Just as actions can be two types, internal and external, the
objective function also can be of two types: global or local.
A global objective function

cost : S → N

accepts the global stateS as the input, and returns a
value concerning the system as a whole. An example is the
maintenance of a minimum weight spanning tree (MWST)
by a system of processes in a network. As another example,
minimizing a system’s power consumption [26] is a global
function: the system adjusts its processor frequency to min-
imize power usage, while still responding to requests in an
acceptable time. Here, the global cost function is the power
consumption, and the external actions are server requests –in
the paper, they are HTTP requests.

The other type of utility function is based uponlocal system
information, which reflects the selfish nature of processes in
large systems spanning multiple administrative domains. Each
processi operates with the selfish goal of maximizing its own
function cost(i): S(i) → N, regardless of the overall system
metric

cost =

n−1∑

i=0

cost(i)

In many cases, such selfish moves by individual processes
lead the system to an equilibrium configuration, called aNash
Equilibrium [27], where no process is able to unilaterally
improve its cost function any more. In [28] Fabrikant et. al
present an interesting example ofnetwork creation gameto
illustrate the impact of selfish moves:

A set of nodes wants to form a network, so that each
node can communicate with others at a minimum
“cost.” Each node chooses a (possibly empty) subset
of the other nodes, and lays down undirected edges
to them (Fig. 1(a)). The edges, once installed, can
be used in both directions, independently of which
node paid for the installation. The union of these
sets of edges is the resulting network topology. The
cost to each node has two components: the total cost
of the edges laid down by this node (the number of
edges times a constantα > 0), plus the sum of the
distances from the node to all others. The game tries
to capture if the system of nodes will reach a Nash
equilibrium, and also computes thePrice of Anarchy,
which is a measure of the deterioration of cost
due to selfish actions when compared withsocial
optimum, the optimal choice over all equilibrium
configurations, for different values ofα.

For some self-optimizing systems involving selfish pro-
cesses, no equilibrium configuration is reached [29]. Fig. 1(b)
shows four process trying to form a shortest path rooted tree
in a selfish manner, where the edge costs are functions of the
process colors. The computation, however, never reaches an
equilibrium configuration.

G. Self-configuration

Self-configuration is a non-masking form of tolerance. It
refers to a variety of responses of a system, such as chang-
ing network topologies [30], [31], changing the geometry
of formation in mobile robots, or changing and setting up
various software and hardware components [4]. Determining
a consistent definition for self-configuration, then, requires
a properly-framed definition of a “configuration”. For the
purposes of our template, define a configuration as a set of
connections amongst modules of the system. Notice that what
constitutes a “module” is purposely left open-ended - a module
may be a particular software package, a server, or a process
in the system. Also “connections” may be physical, or virtual,
or any other form of neighborhood relationship.



Fig. 1. (a) Selfish nodes creating a network. Nodea adds the link to nodee by
payingα = 3, since its overall cost goes down. (b) Four selfish processesare
trying to set up a shortest path tree towards the root. The black processes and
the white processes have different edge costs (which are labeled aswhite,
black). This system will never reach an equilibrium configuration.

Definition 7. A system is self-configuring with respect to a
set of actionsC ⊂ F , if it is able to change its configuration
to restore, or improve some safety property defined over the
configuration space.

In a way, this is quite similar to self-optimization, except
that the common perception, so far, does not indulge selfish
views of the predicate. Self-configuration may be a reaction
to any set of external actions, as long as the reaction changes
the configuration.

In [32], the idea of a self-configuring system is used
to maximize performance of a website during a specified
benchmark. The system consists of an application server, an
image server, and a database server, all three of which share
a limited number of memory and processor cycles. As the
workload changes, the system changes the allocation of mem-
ory and processor cycles to each component, which results
in better performance (such an idea is increasingly important
considering the surge in cloud computing and virtualization).
For this system, the set of actions is the workload contained
in the benchmark, and the system property being improved
is system response time (measured in the benchmark). The
different configurations correspond to different allocations of
memory and processor - each of the three components can be
thought of as “connected” to a certain number of memory and
processor “modules” (notice that if a single physical machine
is used, these “modules” are actually software pieces). This is
an excellent example of a self-configuring system.

H. Self-scaling

Self-scaling refers to a system’s ability to perform well
under many different system sizes [33]–[36]. The definition
of self-scaling must capture this notion of a change in size,but
at the same time must not lose the generality to be applied to
the variety of existing systems that are self-scaling. One must
carefully distinguish between the notions of self-organization
and self-scaling, since both deal with changes in system scale.
The difference is in the definition of the predicates: self-
organization primarily caters to “topological properties,” (like
setting the neighborhood or routing tables correctly) whereas
self-scaling caters to “functional properties” as perceived by
the users or the application. Self-scaling systems however, may
need to modify topology to handle a change in size, when it
is unable to handle changes via internal modifications.

Definition 8. A system is self-scaling with respect to a set of
external actions influencing its scaleCs ⊂ F , if it maintains
or improves a system propertyP during the occurrence of
those actions.

One cannot ignore the resemblance between self-scaling and
self-optimization, although self-optimization does not exclu-
sively deal with actions affecting the system scale.

An example of a self-scaling system is load balancing in
structured P2P systems [37]. Many P2P systems are made up
of heterogeneous nodes, which may have different demands
and capabilities. Therefore, it is helpful if a mechanism exists
to maximize the available resources from all nodes. The nodes
that are operating beyond their desired capacity are considered
“heavy” nodes, while those under their capacity are “light”.
The property being improved, then, is the function(n − h),
wheren is the number of nodes in the system, andh is the
number of heavy nodes (the goal is to have no heavy nodes).
This involves the moving of objects within the P2P system.

I. Excluded Terms

The above list does not include a definition of every self-
* term used in previous research. Many of these exclusions,
however, are purposeful, and were done for one of several
reasons. One reason for excluding a term is that a synonym
for the term has already been defined. For instance, one could
think of self-repairing [38] to be a synonym for self-healing.
Also, self-adjusting [39] can be considered a synonym of
self-management.

Another reason some self-* terms were excluded from this
discussion is that some self-* terms do not represent the
behavior of the system. Self-awareness, a term that has a
previous definition [40], is a good example of this. A system
may be self-aware, but its behavior may be identical to a
system which is not. Self-awareness, then, is a property the
system may have and use, but it implies nothing about the
system’s behavior. Self-monitoring [41] is similar to self-
awareness, and therefore was excluded for the same reason.
This paper focused instead of those self-* terms that fall into
the self-management category.



IV. N EW SELF-* PROPERTIES

In this section, we revisit the space of self-* properties, and
introduce two new self-* properties.

A. Self-immunity

Self-immunity is still a relatively unexplored self-* term.
The primary goal of self-immunity is to introduce alearning
componentin a system. This will enable the processes to
invoke the tolerance mechanism at run-time on an as-needed
basis, instead of statically overloading a non-immune system
with such tolerance mechanism regardless of whether the faults
occur. As a result, the system incurs less overhead, when
failures or perturbation cease to occur, but switches to the
masking mode (which is trivially self-immune) when failures
of any particular type start occurring. Several previous work
focused on artificial immune systems, including those for
distributed systems [42]–[44]. These artificial immune systems
can be considered to be self-immune, although a system need
not imitate the biological immune system to be self-immune,
as the definition of self-immunity is based on behavior, not on
design.

Definition 9. A system is self-immune with respect to a subset
of external actionsC ⊆ F , when (1) it restores the safety
predicates following an occurrence of an action inC, and (2)
eventually, the safety predicates are no more compromised in
spite of the occurrence of that type of action.

The underlying slogan is that “the system learns to get
better with time,” which strikes a balance between long-term
survivability and short-term efficiency. A typical scenario is
as follows:

A mobile ad-hoc network of wireless nodes can be-
come partitioned, if one or more nodes move too far
away from the radio range of other nodes. This will
cause service disruption. To maintain connectivity, a
few other nodes have to increase their transmission
power. If the mobility follows some pattern or is pre-
dictable, then some nodes will proactively cover for
the anticipated period of disruption, and the system
becomes immune to service disruptions caused by
the drifting node.

Self-immunity is meant to be added to an underlying self-
stabilizing, self-organizing, or self-healing system. A system
that is self-immune w.r.t. an external action belonging toC,
can lose self-immunity when an action not belonging toC

occurs. An interesting question is: will it be restored? The
following lemma answers this question:

Lemma 2. A system that is self-immune with respect to a set
of actionsC, will restore the self-immunity property destroyed
by an action not belonging to the setC, only if the underlying
system offers non-masking tolerance w.r.t that action.

This mirrors the intuition on a biological immune system
– eventually, the immune system builds up a defense against
the actions perturbing the system.

B. Self-containment

Although not explicitly stated, currently all forms of self-
protection appear to be masking in nature. However, there is
room for a non-masking form of self-protection too. This leads
to the introduction of aself-containingsystem:

Definition 10. A system is self-containing if external malicious
actionsCm ⊂ F compromise a fraction of the processes of a
distributed system, but eventually normal operation is restored
with the non-compromised processes.

This definition shadows the definition offault-containment
[45] that has been examined in the context of self-stabilizing
systems – the objective is damage control and eventual recov-
ery via limiting the impact of the malicious action. Consider a
wireless sensor network, and assume that an external node has
duped an existing node into routing data to it (i.e. the external
node is stealing data from the system), or a node has been
physically replaced by a rogue proxy node. If the neighbors
of this node detect this event, then they can disconnect itself
from the compromised node (or the proxy node), protecting the
remainder of the nodes, while restoring connectivity via other
paths. Such behavior is useful for places where self-protection
is too strict, but self-healing is too relaxed.

Lessons from biology and nature teach us to use hetero-
geneity in system composition for resilience. For example,
the computers in a robust system should not all run the same
operating system, but instead use an assortment of operating
systems for better survivability. The rationale is that only
a small fraction of these will fall prey to an attacker, but
eventually all of them will restore their functionality viaself-
healing.

V. RELATIONSHIPS AMONG SELF-* PROPERTIES

The properties defined above are obviously not mutually
exclusive. Many of the properties overlap, some are subsets
of others, and a system may exhibit multiple self-* behaviors.
These relationships are easier to see when using the self-
management template, as the three components and their
relationships can be derived quickly. Table I helps to show
these relationships.

Using the table, some of the relationships become more
apparent. For instance, all properties are subsets of self-
managing. Self-protection implies self-containment, since the
fraction of the system compromised is of size zero. Some prop-
erties are not strict subsets, but rather overlap other properties.
For instance, self-protection and self-immunity have some
overlap for systems that try to maintain a safety predicateP

in the presence of repeated malicious actions. In the following
section, we examine a selected set of self-* properties in
greater detail.

A. Self-stabilization vs. self-healing

Self-stabilization requires the eventual restoration of asafety
propertry following the occurrence ofany transient fault. Self-
healing has a broader definition: it can restore a system to a
safe configuration only after the occurrence ofcertain faults,



TABLE I
SUMMARY OF SELF-* PROPERTIES. F = SET OF EXTERNAL ACTIONS, P = PREDICATE OVER GLOBAL STATE.

Self-* Property Name Adversarial actions Behavior Predicate
maintained

Self-stabilization All transient failures Restore P

Self-adapting Change of environment
R

Restore if Ri then Pi

Self-healing SomeC ⊆ F Restore P

Self-organizing Process join or leave Maintain, improve, or
restore

P

Self-protecting Some mailicious actions Maintain Predicate over trust
Self-optimization SomeC ⊆ F Improve or

maximize/minimize
as appropriate

An objective function
of the global or local
state

Self-configuration Some C ⊂ F , often
includes user demands
for service

Maintain, improve, or
restore using configura-
tion changes

Predicate over
system configuration
to optimize
performance.
Sometimes addresses
geometric invariant

Self-scaling Changes of system scale
or demand

Restore, or improve Predicate over service
quality

Self-immunity SomeC ⊆ F Eventually maintain P

Self-containment Some mailicious actions Maintain (for a subset
of processes)

Predicate over trust

while the choice can be made from a larger set of failure
beyond transient failures. It can also mask such failures. which
is beyond the scope of self-stabilizing systems. This leadsto
lemma 3.

Lemma 3. Every self-stabilizing systems is trivially self-
healing with respect to any action that corrupts its global
state, but the reverse is not true.

B. Self-stabilization vs. self-organization

While both self-stabilization and self-organization are non-
masking forms of tolerance, self-organization has a relatively
limited agenda, since it only addresses join and leave oper-
ations, while self-stabilization caters to all transient failures
that can corrupt the global state. Consider the Chord P2P
system [21], which is self-organizing. However, Chord is not
self-stabilizing – if the system is split into two rings (which
could be caused by transient faults), then there is no way the
rings can join back together. On the other hand, a system that
is self-stabilizing may have a large recovery time (greaterthan
the sublinear bound prescribed in Section 3), so it will failto
meet the recovery time criteria of self-organizing systems. This
leads to the following lemma:

Lemma 4. The intersection between the set of self-stabilizing
systems and self-organizing systems is non-empty, although no
one completely belongs to the other set.

C. Self-organization vs. self-configuration

Self-configuration requires a system to change its config-
uration (often perceived as physical or logical connections
amongst modules) to restore, maintain or improve a sys-
tem property following an arbitrary adversarial action. These
connections may be amongst different hardware or software

modules, or it may even reflect a geometric invariant. Self-
organization, on the other hand, deals exclusively with joins
and leaves. This leads to the following lemma.

Lemma 5. Every self-organizing system is self-configuring,
but the reverse is not true.

For an example of a system that is self-configuration is not
self-organization, consider the self-configuring web server in
[32]. It changes connections between the server components
and processor cycles and memory capacity to provide a
stable response, and is obviously self-configuring. However,
if another server component is added, then the system will
not automatically detect this component and integrate it into
the system.

D. Self-immunity vs. self-healing

Self-immunity offers the promise of eventual masking of
the effect of an external action, although it may not mask
the effect at the beginning. After repeated occurrences of a
certain fault, the system is guaranteed to maintain a system
property. Self-healing requires a property is either maintained
or restored for a certain set of faults. These observations lead
to the following lemma:

Lemma 6. Every self-immune system is self-healing, but the
reverse is not true.

To show that self-healing systems are not always self-
immune, consider a system for discovering services. In some
systems, such as mobile networks, it is difficult for each
member of the system to know fully what services of the
system are available. Service discovery protocols help solve
this problem – these allow systems to either recover from
the loss of a service, and locate another service that may be
used [46]. One specific set of examples examined service-



discovery protocols in the presence of communication failures
[47]. Such a service discovery protocol makes a system self-
healing from communication failures, but does not make
it self-immune. This system maintains or restores a safety
property (a consistent system view) following the a set of
fault actions (communication failure). However, it does not
mask these communication faults over time - if a component
fails many times after the system has recovered, the system
will continue to be perturbed.

E. Self-immunity vs. self-protection

Self-immunity safeguards the safety property byeventu-
ally maskinga certain set of external actions, whereas self-
protectionalways masksthe effects of external actions deemed
to be malicious in nature.

Lemma 7. Every self-protecting system is self-immune, but
the reverse is not true.

However, self-immunity differs in two key ways from self-
protection. First, self-immunity allows a system to develop
masking tolerance over time. The system learns about what
failures are occuring, and prepares itself to handle the actual
faults it may face. Secondly, self-immunity does not apply
to malicious actions only - it may provide eventual masking
tolerance for other actions as well, although it may not be
a good choice in the presence of security threats, since the
system becomes vulnerable during the learning phase.

VI. CONCLUSION

This paper is an attempt to reconcile the various viewpoints
about self-* properties by providing a formal foundation.
These properties are all closely related in that each is just
a special case of self-management. This similarity may be
helpful in expanding the field. For instance, self-stabilization
has a large existing body of research, and this could used
to understand things about other new or less studied self-*
properties. The benefit of using a self-management template
is to explore meaningful self-* properties that may exist in
this space.

There are many grey areas in such a classification. Note that
we tried to classify adversarial actions into process crashes,
join or leave operations, malicious actions etc. However such
a classification is highly subjective. For example, an adversary
may crash a sensor node to reduce coverage and cause a
security breach, so the crash is essentially a malicious action.

A system can have multiple types of self-* properties w.r.t
different sets of adversarial actions. For example, a system
may be self-stabilizing w.r.t. any number of transient failures,
but self-immune to at most one failure. A self-organizing
system can also be self-optimizing

So far, we characterized the system property of interest to be
a safety property. A common question is: what if an external
action destroys the liveness property, or induces a deadlock?
Indeed, some types of fail-safe systems prefer to induce a
deadlock when the consequences of the adversarial action are
damaging to the application: the goal is to solicit human

intervention. For non-masking tolerance, however, recovery
is hampered due to the lack of progress. One solution is to
modify the basic design so that progress is not affected by the
adversarial action of interest. Most self-stabilizing systems use
this approach. As an alternative, after a timeout period (whose
value should be larger that the maximum possible response
time), the system has to be internally reset or restarted. Unless
the system is fully asynchronous, the use of timeout is a
common tool for detecting crash and initiating reset.

Although not explicitly mentioned, the restoration of a
system property often accommodates graceful degradation,
particularly when the system has to deal with the crash of
processes, or loss of resources, or excessive service demands.
To what extent a safety predicateP can be allowed to degrade
and still it becomes acceptable to the application, is entirely the
designer’s choice. For example ifP corresponds to servicing
a number of requests in the FIFO order, and a weakened
predicateP ′ implies servicing the requests in any order, then
some applications may accept the substitution ofP by P ′.
An increase in the space or time complexity by a polylog
amount is widely accepted by the community. However, it is
also expected that following a repair (or replacement) of a
crashed process, the original safety predicate will be restored.

Most definitions still carry with it a certain level of ambi-
guity by allowing different aspects of the property to depend
upon the application. This is evidenced by a common phrase
from most definitions - “with respect to.” This ambiguity, how-
ever, is unavoidable without creating an exponentially-large
set of self-* properties. Different systems each have differ-
ent safe configurations, different environments, and different
potential faults. Furthermore, there are an infinite numberof
contingencies possible with real-world systems. Therefore, by
necessity,any distributed system operates “with respect to”
a set of limitations. In a way, the goal of self-* computing
research is to widen this “with respect to” set to include more
and more actual possibilities.

One last observation from these definitions is that some
system attributes are required for certain self-* properties, but
not for others. For instance, a system must have a form of
self-awareness to compute a utility function, and therefore a
system must be self-aware to be self-optimizing. Conversely,
a system need not be self-aware to be self-healing - it may
run a healing protocol at periodic intervals regardless of the
system state, which would not require self-awareness. This
observation matches with a previous work on the need for self-
awareness in grid systems [40]. In general, examining these
definitions can provide insight into necessary and unnecessary
attributes of a system design.
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