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Abstract—The scale and complexity of distributed systems stabilizing,” “self-organizing,” and more. Collectivelysuch
have steadily grown in the recent years. Management of this properties are referred to as “self-*" properties. Autonom
complexity has drawn attention towards systems that can au- computing, an initiative started by IBM in 2001, is a vision

tomatically maintain themselves throughout different scearios. . . N
These systems have been described with many terms, such ado create systems that implement a collection of these*self-

self-healing, self-stabilizing, self-organizing, selédaptive, self- Properties [4], [5]. However, in spite of the increasedrtiten,
optimizing, self-protecting, and self-managing. These aibutes there exists considerable ambiguity about the perceptfon o
are collectively referred to as self-* properties. Even wih the the precise meaning of these properties. Such ambiguities a
increased focus on self-* research, there exists much ambiy |y q|y to become a troublesome barrier in formalizing resba
in the perceptions of the different self-* properties. In this paper, . - - L.
we propose to resolve the ambiguity by introducing a templa¢ in this area'.Th'.‘Q’ pa}per attempts tF’ resolve these amiBguiti
for defining self-* properties, and use it to offer formal definitions Our contribution is threefold. First, we create a common
of existing self-* terms. We then present some observatiorabout framework to define and analyze the various self-* proper-
the relationships among the different self-* properties. Fnally, ties, and map the current definitions into this framework.
we propose two new self-* properties that are meaningful in his Second, on the basis of this framework, we explore the
space. inter-relationship among the various self-* propertieleng
~ Keywords-Masking and non-masking tolerance; safety and with appropriate examples. Finally, we use the framework to
liveness properties; self-healing; self-stabilizing; d&organizing; introduce two new self-* properties that can exist in thiaca
self-adaptive systems . . . .
The paper has six sections. Section 2 introduces the model
and the notations. Section 3 casts the different known self-
* properties into a common framework. Section 4 introduces

The recent past has been a productive time for distributedo new self-* properties. Examples of how various self-*
systems research. The lowering cost of components has mpelsperties are related to one another are discussed irosecti
distributed computing more practical, and large systemve heb. Finally, Section 6 contains some concluding remarks.
witnessed significant growth. Furthermore, the Internetis-
lution into a common staple in households today has created a Il. THE MODEL
demand for other types of distributed systems of a tremesidou The system under consideration consistsnofrocesses
scale, such as peer-to-peer systems and cloud computing.(n > 1), and the graptG = (V, E) represents its topology,

As the scale and complexity of distributed applicationsehawith verticesV representing processes, and edgesepre-
grown, their management also has become more challengisgnting its communication links. For each processV, let
For instance, the recent trend of cloud computing relig$(:) represent the neighbors of thus (i,j) € E < j €
heavily on large clusters of servers. Amazon's EC2 [1] prav (i) A i € N(j). Each process executes a program that
vides huge amounts of computing power to many customecsnsists of one or more guarded actiopns— A, whereg
including imageloop.com [2] (a photo-sharing website) and a predicate involving the variables éfand those of its
SnappyFingers [3](a search engine). These applicatigmsoex neighbors, andi is an action that updates the local stafé)
reliable and fast service at low cost, even though theiresenof i. The global stat& (also called aonfiguratior) consists of
instances may be running on a complex system containithg local states of all the processescdmputations a finite or
hundreds of computers. Skype delivers audio and video itdinite sequence of global states that satisfies two prigsert
nearly 200 million users over peer-to-peer networks, and (&) if S and S’ are two consecutive states in the sequence,
clearly a success story. It is not hard to imagine that, withothen there exists a processuch that: has an enabled guard
sophisticated techniques, managing this level of complexin S and execution of the corresponding action results in the
to provide reliable performance for so many customers woulthteS’, and (b) if the sequence is finite, then in the last state
become next to impossible. of the sequence, no process has an enabled guard.

To relieve some of the burden of complexity, the current Divide the set of of all possible actions into two classes:
trend is towards maintaining at least some aspect of operternal and external An internal action is a system action
ation automatically, without human intervention. Thess-syas described in the previous paragraph. An external action
tems have been called “self-healing,” “self-protectintgglf- belonging to the sef’, on the other hand, is an action caused

I. INTRODUCTION



by an adversary, and has a wider scope. It can change th&he definition is a loose one. It does not specify if the
environmentR: the environment consists of parameters thablerance is masking or non-masking, nor does it state amyth
the system can only read, but cannot modify using the interrebout whether a gracefully degraded end configuration is
actions. External actions include the set of internal astioacceptable. It is also silent about the time needed to recove
and can modify any process’ internal state, but they cdfor non-masking tolerance), as long as recovery is guaeght
also crash processes, induce failures by taking ad-hoaresti in a bounded number of steps. Such additional considesation
change the network topology, put the system in an arbitrangll lead to a further refinement of the above definition.
configuration, launch security attacks, or change user ddma Refinement occurs by modifying at least one of the three
for service from the system, etc. External actions thatcaffeparts of the definition. The first part is the external actions
the performance of a system are also cafiadlt actionsor (C the system responds to. The second portion is whether
adversarial actions the system maintains, improves, or restores some property
The correctness of a system is specified bysi$etyand P. Obviously, improving a property implies the presence of
livenessproperties [6]. Informally, a safety property impliessome objective function (the terimproveis used to mean
that “ bad things never happen to the system,” and is champroving a function up to its maximum, or minimum, or the
acterized by an invarianP. A liveness property says thatmost desirable value). The final part of the self-management
“good happens eventually happen,” examples are progregsnplate is the property being maintained, improved, or
termination, or convergence to a desired configuration.l&Vhrestored. By refining these three components, other self-*
the violation of a safety property can be determined hyoperties can be defined.
examining a finite prefix of the computation, the violation of
the liveness property cannot determined in a similar manngr
A system is in alegal or consistentconfiguration w.rt. a
given environmeng, when the corresponding safety predicate Self-stabilization was first introduced in 1974 by Dijkstra
P holds. An external or adversarial action can affect thg], and it has been an active research topic [10] for many
safety or liveness properties of a system. Based on how thgsars. It is a form of non-masking tolerance that refers & th
properties are affected and how they are restored, one edility of a system to spontaneously recover from any ihitia
define four different types of tolerances [7] (1) masking, (Zonfiguration.
non-masking, (3) fail-safe, and (4) graceful degradatian. e ) L )
system exhibitsnasking tolerancev.r.t. an actionC, when Definition 2. A system is self-stabilizing if, (1) starting from
both safety and liveness properties are unaffected’byn 2" arbﬁrary |n|t|ql conflguratlop, it recovers to a legal 0o
non-masking tolerangehe safety property is violated by Soméﬁgurauon w.here its safety predicafe holds, and (2) remains
external action inF, but not the liveness, and eventually thd" that configuration thereafter.
safety property is restored. A systenfasi-safew.r.t. anaction  The arbitrary configurations can be generated by ad-hoc
in %, if the liveness properties are compromised but not ifjtialization, transient failures caused by any extemaions
safety properties. Finally, in gracefully degradingsystem, i, . such failures however, are ordinarily not expected to
the external action affects the safety properties (but t®t hfect the program codes of the different processes. Ciseec
liveness), and the system eventually recovers to a configara |ytions argue why the external actions cannot create deksilo
that satisfies a weaker predicdte(P C ) thatis acceptable ¢ |iyelocks, and demonstrate the convergence propertyn(fro
to the application. any configuration to a legal configuration) and the closure
property (of the legal configurations). Code corruptiondkea
to byzantine behavior (that is irreversible and needs to be
Based on the model developed in Section 2, we analyze thasked), and certain forms of security attacks are capable

Self-stabilization

IlIl. THE SELF* FRAMEWORK

different self-* properties. of modifying program codes. However, most self-stabiligin
systems do not address it. That said, work has been done
A. Self-management on the feasibility of self-stabilization where externatians

Self-management is a vision. It describes a system that fiaglude the ability to corrupt the program code [11]
at least one self-* property [8]. It can be used as a genericExternal actions can also crash processes. However, to
property that encompasses the various classes of “auteiontleal with crash failures, we need to adopt a broader view
behavior. Self-managing, then, can be thought of as thenparef a self-stabilizing system by transforming it into self-
or superclass of all self-* properties. The definition offsel adaptivesystem. A self-adaptive system reacts to changes in
management will serve as a framework for specifying othéte environment by changing its safety predicate accolyling
self-* properties. [12].

Definition 1. A system is self-managing with respect to aemma 1. Let{ R, R», ..., R, } be a set of boolean environ-
subset of external actionS C F, if it automatically (without ment variables, and Ie®; be the desired safety predicate when
human intervention) maintains, improves, or restores efety the environmentR; holds. Then the self-adaptive system is
property P following the occurrence of actions ifi. equivalent to a self-stabilizing system, for which the et



Windows Update). This caused a flood of log-in requests,

p— \/(R- A P) which, combined with the lack of network resources, prordpte
- 3 K3 . . .oy .

a chain reaction that had a critical impact.

. Although most self-healing solutions are non-masking or
will-hold. reactive in nature, there are masking or proactive versions
One can represent the crash of a procedy a boolean too. They are better known gsedictive self-healingThese

crashed(i), which is an environment variable. If an externasystems anticipate failures from symptoms of erratic binav

action setsrashed(i) to true, then the system has to recovebut protects the system from a catastrophic service dismipt
to another predefined legal configuration. Using Lemma by internally restarting certain modules and masking the
this can be accommodated into the extended view of a sdHHure from the user. The idea of internally restarting ateymn

stabilizing system. via reboot tree was proposed by Candea and Fox [18]. Sun
Dolev [10] presents a large number of self-stabilizatioMicrosystems’s Solaris operating system (and severalrothe
algorithms for various applications. operating systems) have this facility.

. Interestingly, when the external action alters the network
C. Self-healing topology G via the addition or deletion of nodes, the system
Self-healing is mostly viewed as a form abn-masking is calledself-organizinginstead of self-healing.
tolerance from a limited subset of the set of possible exter-
nal actions. However, self-healing does not exclude maskiR- Self-organization
tolerance, either. Self-healing systems have been destiib  Ajthough self-organization is a widely used term across
various articles like [13]-[16]. However, @onsistentformal yarious scientific disciplines, in computer sciencself-

definition of self-healing is lacking. organizationis a self-* property that has received increased

Definition 3. A system is said to be self-healing with respedtention largely due to the increased interest in peqetr-
to a subset of external actiorts C F if occurrence of actions Systems, ad-hoc networks, and cooperating robot systems or

in C' causes at most a temporary violation of the systen¥/arm robotics. Self-organization is a non-masking form of
safety propertyP. tolerance. Several formal definitions of self-organizaxist,

but with slightly differing views. One requires the system t

Self-healing is focused on maintaining or restoring a Sygaintain, or monotonically improve a function value invioly
tem’s safety properties. When the safety property is véulat the neighbors of the joining or the departing process in-
healing may take an arbitrary but finite amount of timeetween process joins and leaves [19]. A second definition
However, unlike self-stabilization, most self-healings®yms states that a self-organizing system is a self-stabilisiysgem
guarantee healing from a limited subset of all external agat recovers irsub-linear timefollowing each join or leave,
tionS. ThIS iS in contrast W|th a Se|f-Stabi|iZing SySterTatth and that process joins and |eaves cause On'y |Oca| Changes
guarantees recovery fromll actions that perturbs its globalig the system [20]. The time constraint imposed in [20] is
state. However, crash or Byzantine failures are ordinardy not universally accepted, but its motivation is to make the
factored into the definition of a self-stabilizing systenhile  g1gorithm scalable, so we will include it in our definition.
a self-healing system may cater to such failures. Another issue is the number of concurrent join or leave

A self-healing system often exhibits a degraded level @ferations supported by the algorithm. Our definition will
performance when the external action causes a crash faily8iect the strongest view.

An example is a peer-to-peer network that is resilient to . . o
external actions causing the removal of nodes [17]. Assgmi;;,)eflmtmn 4. A system withn processes is self-organizing, if it
that at most one node is removed at a time, the soluti#intains, improves, or restores one or more safety progert
promises that the network diameter will never be more thanfa following the occurrence of a subset of external actions
factor of O(log A) larger than that of the original networly( i C £ involving the concurrent join of up te processes, or

is the maximum degree of a node in the network), and thi¢ concurrent departure of up & processes, with a sublinear
no node will experience an increase in degree greater tH&ROVEry time per join or leave.

three Such changes will cause a limited degradation of the og an example of self-organization, consider the peer-to-
performance. peer system Chord [21]. It provides guarantees on recovery

The choice of the set of actions w.r.t which self-healingom concurrent failure happening with probabilié/, and

is desirable will depend on the application. The larger th&ficient lookups even when the size of the system doubles.
set is, the better is the self-healing property. Recall that

Skype network, which has in-built ability to self-heal fromE. Self-protection
minor failures. However, on Thursday, 16th August 2007, goi¢ o otection traditionally implies masking fault teiece

Skype_became unstable "?‘”d suffered a critical d,'srUpt'bn‘V\!.r.t external actions that have malicious intent, by apgy
was triggered by a massive restart of the users’ computers

across the globe wit.h.in a very _short time period (as theyigee vilu  Arak:  What  happened on  August  16.
re-booted after receiving a routine set of patches througitp://heartbeat.skype.com/2007/08/wieaippenedon_august16.html



trust mechanisms or privacy policies to secure the systain an The other type of utility function is based uptotal system
its data [22], [23]. This leads to the following definition: information, which reflects the selfish nature of procesges i

Definition 5. A system is self-protecting, if it continuousl;}arge systems spanning multiple administrative domaiash

. . rocess operates with the selfish goal of maximizing its own
maintains a safety propertf in the presence of a subset o - N
. . 2 : function cost(i): S(i) — N, regardless of the overall system
external actions with malicious intenf;,,, C F.

metric
This definition is quite generic, and similar to the self-
management template. The safety property can be any predi- n-l
cate related to the integrity of the system and its data. A wi cost =Y _ cost(i)
many definitions, the choice of the malicious external atio =0

and the safety properties that are safeguarded, are ttitica |n many cases, such selfish moves by individual processes
judging the merit of an implementation of self-protection. |ead the system to an equilibrium configuration, calledash

As an example of a self-protecting system, consider tigyyilibrium [27], where no process is able to unilaterally
OceanStore archival storage built on a peer-to-peer Ngprove its cost function any more. In [28] Fabrikant et. al

work [24]. OceanStore provides a large storage system, sent an interesting example métwork creation gaméo
ensures that data is available and secure, regardless bfmeaci|ystrate the impact of selfish moves:

failures and attempted data theft. In this sense, Oceam&tor
self-protecting. The predicate it maintains is data atilitg,

and compliance to access constraints for each file, and the
actions are machine failures or access control violations.
Karlof and Wagner [25] described novel ways of launching
attacks on wireless sensor networks, along with methods of
protecting the system from such attacks.

A set of nodes wants to form a network, so that each
node can communicate with others at a minimum
“cost.” Each node chooses a (possibly empty) subset
of the other nodes, and lays down undirected edges
to them (Fig. 1(a)). The edges, once installed, can
be used in both directions, independently of which
node paid for the installation. The union of these
F. Self-optimization sets of edges is the resulting network topology. The

While the previous self-* properties are concerned with ~ COSt to each node has two components: the total cost
the maintenance or restoration of a safety predicate, self- Of the edges laid down by this node (the number of

optimization focuses on the value of abjective functioras edges times a constaat> 0), plus the sum of the
the System property’ and aims at maximizing (Or m|n|m|z|ng) distances from the node to all others. The game tries
this objective function. This matches the intuitive notioh to capture if the system of nodes will reach a Nash
optimization — striving for improvement whenever possible  €quilibrium, and also computes tReice of Anarchy
The following definition captures this natural idea. which is a measure of the deterioration of cost

due to selfish actions when compared wibcial
optimum the optimal choice over all equilibrium
configurations, for different values af.

For some self-optimizing systems involving selfish pro-
cesses, no equilibrium configuration is reached [29]. Fb) 1
The goal is to maintain the system in an optimal configurghows four process trying to form a shortest path rooted tree
tion. It is possible that the system was sub-optimal at tike ti in a selfish manner, where the edge costs are functions of the
of creation, or the system started in an optimal configunatioprocess colors. The computation, however, never reaches an
but a set of external actions made it sub-optimal. equilibrium configuration.
Just as actions can be two types, internal and external, the
objective function also can be of two types: global or locaG. Self-configuration
A global objective function

Definition 6. A system is self-optimizing if, starting from an
arbitrary initial configuration, it improves (i.e. maxinmgs or

minimizes as appropriate) the value of a predefined objectiv
function of its global state.

Self-configuration is a non-masking form of tolerance. It
refers to a variety of responses of a system, such as chang-
ing network topologies [30], [31], changing the geometry

accepts the global stat§ as the input, and returns aof formation in mobile robots, or changing and setting up
value concerning the system as a whole. An example is thaious software and hardware components [4]. Determining
maintenance of a minimum weight spanning tree (MWS® consistent definition for self-configuration, then, regsi
by a system of processes in a network. As another exammeproperly-framed definition of a “configuration”. For the
minimizing a system’s power consumption [26] is a globglurposes of our template, define a configuration as a set of
function: the system adjusts its processor frequency to miconnections amongst modules of the system. Notice that what
imize power usage, while still responding to requests in aonstitutes a “module” is purposely left open-ended - a nedu
acceptable time. Here, the global cost function is the poweray be a particular software package, a server, or a process
consumption, and the external actions are server requeésts i the system. Also “connections” may be physical, or viktua
the paper, they are HTTP requests. or any other form of neighborhood relationship.

cost: S — N



H. Self-scaling

Self-scaling refers to a system’s ability to perform well
under many different system sizes [33]-[36]. The definition
of self-scaling must capture this notion of a change in $iaé,
at the same time must not lose the generality to be applied to
the variety of existing systems that are self-scaling. Onstm
carefully distinguish between the notions of self-orgation
and self-scaling, since both deal with changes in systeha.sca
The difference is in the definition of the predicates: self-
organization primarily caters to “topological propertigéike
setting the neighborhood or routing tables correctly) whsr
self-scaling caters to “functional properties” as perediby
the users or the application. Self-scaling systems howenay
need to modify topology to handle a change in size, when it
is unable to handle changes via internal modifications.

Definition 8. A system is self-scaling with respect to a set of
external actions influencing its scatg, C F, if it maintains

or improves a system propert® during the occurrence of
those actions.

(b)

Fig. 1. (a) Seffish nodes creating a network. Nadelds the link tonodeby ~ One cannot ignore the resemblance between self-scaling and

payinga = 3, Sincehitft Ovter?:hcgsezgt%tj\lsa?;:/{;{e(?());o#ﬁgicggé?:ﬁz self-optimization, although self-optimization does natle-

:L)gnv%r:gesgtr;c%:ssesohae\?e F(infferent edge costs (WhiC.h astehlaswhi t e, sively deal with actions affec_tmg the SySt.em scale. . .

bl ack). This system will never reach an equilibrium configuration An example of a self-scaling system is load balancing in
structured P2P systems [37]. Many P2P systems are made up
of heterogeneous nodes, which may have different demands
and capabilities. Therefore, it is helpful if a mechanisnsex

Definition 7. A system is self-configuring with respect to 4 maximize the available resources from all nodes. The siode

set of actiong” C F, if it is able to change its configuration that are operating beyond their desired capacity are ceresid

to restore, or improve some safety property defined over tifeeavy” nodes, while those under their capacity are “light”

configuration space. The property being improved, then, is the function— h),
wheren is the number of nodes in the system, ands the

In a way, this is quite similar to self-optimization, excephumber of heavy nodes (the goal is to have no heavy nodes).

that the common perception, so far, does not indulge selfighis involves the moving of objects within the P2P system.

views of the predicate. Self-configuration may be a reaction

to any set of external actions, as long as the reaction clsangeExcluded Terms

the configuration. The above list does not include a definition of every self-

In [32], the idea of a self-configuring system is used term used in previous research. Many of these exclusions,
to maximize performance of a website during a specifidtbwever, are purposeful, and were done for one of several
benchmark. The system consists of an application server,r@asons. One reason for excluding a term is that a synonym
image server, and a database server, all three of which shiarethe term has already been defined. For instance, one could
a limited number of memory and processor cycles. As tlihink of self-repairing [38] to be a synonym for self-healin
workload changes, the system changes the allocation of mehiso, self-adjusting [39] can be considered a synonym of
ory and processor cycles to each component, which resudedf-management.
in better performance (such an idea is increasingly importa Another reason some self-* terms were excluded from this
considering the surge in cloud computing and virtualizgtio discussion is that some self-* terms do not represent the
For this system, the set of actions is the workload containbéhavior of the system. Self-awareness, a term that has a
in the benchmark, and the system property being improvpdevious definition [40], is a good example of this. A system
is system response time (measured in the benchmark). Thay be self-aware, but its behavior may be identical to a
different configurations correspond to different allooat of system which is not. Self-awareness, then, is a property the
memory and processor - each of the three components carspgtem may have and use, but it implies nothing about the
thought of as “connected” to a certain number of memory asgystem’s behavior. Self-monitoring [41] is similar to self
processor “modules” (notice that if a single physical maehi awareness, and therefore was excluded for the same reason.
is used, these “modules” are actually software pieces) Ehi This paper focused instead of those self-* terms that fadl in
an excellent example of a self-configuring system. the self-management category.



IV. NEw SELF-* PROPERTIES B. Self-containment
In this section, we revisit the space of self-* properties] a  Although not explicitly stated, currently all forms of self

introduce two new self-* properties. protection appear to be masking in nature. However, there is
. . room for a non-masking form of self-protection too. Thisdsa
A. Self-immunity to the introduction of aelf-containingsystem:

Self-immunity is still a relatively unexplored self-* term pefinition 10. A system is self-containing if external malicious
The primary goal of self-immunity is to introducel@arning  4ctionsc,,, c F compromise a fraction of the processes of a

componentin a system. This will enable the processes igistriputed system, but eventually normal operation isaresi
invoke the tolerance mechanism at run-time on an as-needgh the non-compromised processes.

basis, instead of statically overloading a non-immuneesyst

with such tolerance mechanism regardless of whether ttisfau  This definition shadows the definition édult-containment
occur. As a result, the system incurs less overhead, wH4®] that has been examined in the context of self-stahijzi
failures or perturbation cease to occur, but switches to tR¥stems — the objective is damage control and eventual recov
masking mode (which is trivially self-immune) when failsre €y Via limiting the impact of the malicious action. Conside

of any particular type start occurring. Several previouskwo Wireless sensor network, and assume that an external nsde ha
focused on artificial immune systems, including those fétuped an existing node into routing data to it (i.e. the exer
distributed systems [42]—[44]. These artificial immuneteyss Node is stealing data from the system), or a node has been
can be considered to be self-immune, although a system négysically replaced by a rogue proxy node. If the neighbors
not imitate the biological immune system to be self-immunéf this node detect this event, then they can disconnedt itse

as the definition of self-immunity is based on behavior, mot dfom the compromised node (or the proxy node), protectieg th
design. remainder of the nodes, while restoring connectivity viaeot

o ) _ _ paths. Such behavior is useful for places where self-ptiotec
Definition 9. A system is self-immune with respect to a subsgtiqo strict. but self-healing is too relaxed.

of external actionsC’ C F, when (1) it restores the safety | essons from biology and nature teach us to use hetero-
predicates following an occurrence of an actiondh and (2) geneity in system composition for resilience. For example,

eventually, the safety predicates are no more compromisedihe computers in a robust system should not all run the same
spite of the occurrence of that type of action. operating system, but instead use an assortment of opgratin

The underlying slogan is that “the system learns to gg},fstems for _better survivab?lity. The rationale is thatyonl
better with time,” which strikes a balance between longater@ small fraction of these will fall prey to an attacker, but
survivability and short-term efficiency. A typical scermis eventually all of them will restore their functionality vielf-
as follows: healing.

A mobile ad-hoc network of wireless nodes can be- V. RELATIONSHIPS AMONG SELF* PROPERTIES
come partitioned, if one or more nodes move too far
away from the radio range of other nodes. This will
cause service disruption. To maintain connectivity, a
few other nodes have to increase their transmission
power. If the mobility follows some pattern or is pre-
dictable, then some nodes will proactively cover for
the anticipated period of disruption, and the system

become_s immune to service disruptions caused by Using the table, some of the relationships become more
the drifting node. apparent. For instance, all properties are subsets of self-
Self-immunity is meant to be added to an underlying selfnanaging. Self-protection implies self-containmentgcsithe
stabilizing, self-organizing, or self-healing system. ¥stem fraction of the system compromised is of size zero. Some-prop
that is self-immune w.r.t. an external action belonging’tp erties are not strict subsets, but rather overlap othergpties.
can lose self-immunity when an action not belonging(to For instance, self-protection and self-immunity have some
occurs. An interesting question is: will it be restored? Thgyerlap for systems that try to maintain a safety predidate
following lemma answers this question: in the presence of repeated malicious actions. In the fatigw

Lemma 2. A system that is self-mmune with respect to a s8gction, we examine a selected set of self-* properties in
of actionsC, will restore the self-immunity property destroye@reater detail.

by an action not belonging to the €t only if the underlying A self-stabilization vs. self-healing
system offers non-masking tolerance w.r.t that action.

The properties defined above are obviously not mutually
exclusive. Many of the properties overlap, some are subsets
of others, and a system may exhibit multiple self-* behasior
These relationships are easier to see when using the self-
management template, as the three components and their
relationships can be derived quickly. Table | helps to show
these relationships.

Self-stabilization requires the eventual restoration sdifety
This mirrors the intuition on a biological immune systenpropertry following the occurrence ahytransient fault. Self-

— eventually, the immune system builds up a defense agaihstling has a broader definition: it can restore a system to a

the actions perturbing the system. safe configuration only after the occurrenceceftain faults,



TABLE |
SUMMARY OF SELF-* PROPERTIES F = SET OF EXTERNAL ACTIONS, P =PREDICATE OVER GLOBAL STATE

Self-* Property Name | Adversarial actions Behavior Predicate
maintained
Self-stabilization All transient failures Restore P
Self-adapting Change of environmen{ Restore if R; then P;
R
Self-healing SomeC C F Restore P
Self-organizing Process join or leave Maintain, improve, or| P
restore
Self-protecting Some mailicious actiong Maintain Predicate over trust
Self-optimization SomeC C F Improve or | An objective function
maximize/minimize of the global or local
as appropriate state
Self-configuration Some C' C F, often | Maintain, improve, or| Predicate over
includes user demands restore using configura; system configuration|
for service tion changes to optimize
performance.
Sometimes addresses
geometric invariant
Self-scaling Changes of system scale Restore, or improve Predicate over service
or demand quality
Self-immunity SomeC C F Eventually maintain P
Self-containment Some mailicious actiong Maintain (for a subset Predicate over trust
of processes)

while the choice can be made from a larger set of failumodules, or it may even reflect a geometric invariant. Self-
beyond transient failures. It can also mask such failurééchv organization, on the other hand, deals exclusively witingoi
is beyond the scope of self-stabilizing systems. This ldadsand leaves. This leads to the following lemma.

lemma 3. Lemma 5. Every self-organizing system is self-configuring,

Lemma 3. Every self-stabilizing systems is trivially selfbut the reverse is not true.
healing with respect to any action that corrupts its global

state, but the reverse is not true. For an example of a system that is self-configuration is not

self-organization, consider the self-configuring web sein

[32]. It changes connections between the server components

and processor cycles and memory capacity to provide a
While both self-stabilization and self-organization amnn stable response, and is obviously self-configuring. Howeve

masking forms of tolerance, self-organization has a rediti if another server component is added, then the system will

limited agenda, since it only addresses join and leave opept automatically detect this component and integratetd in

ations, while self-stabilization caters to all transieatitfres the system.

that can corrupt the global state. Consider the Chord P2P . . .

system [21], which is self-organizing. However, Chord ig nd>: Self-immunity vs. self-healing

self-stabilizing — if the system is split into two rings (whi Self-immunity offers the promise of eventual masking of

could be caused by transient faults), then there is no way tine effect of an external action, although it may not mask

rings can join back together. On the other hand, a system thiaé¢ effect at the beginning. After repeated occurrences of a

is self-stabilizing may have a large recovery time (gretitan certain fault, the system is guaranteed to maintain a system

the sublinear bound prescribed in Section 3), so it will fail property. Self-healing requires a property is either nzdined

meet the recovery time criteria of self-organizing systefiés or restored for a certain set of faults. These observatiead |

leads to the following lemma: to the following lemma:

B. Self-stabilization vs. self-organization

Lemma 4. The intersection between the set of self-stabilizingemma 6. Every self-immune system is self-healing, but the
systems and self-organizing systems is non-empty, althooig reverse is not true.

one completely belongs to the other set. .
pletely 9 To show that self-healing systems are not always self-

immune, consider a system for discovering services. In some
systems, such as mobile networks, it is difficult for each
Self-configuration requires a system to change its configtember of the system to know fully what services of the
uration (often perceived as physical or logical connediosystem are available. Service discovery protocols helpesol
amongst modules) to restore, maintain or improve a syis problem — these allow systems to either recover from
tem property following an arbitrary adversarial actione$l the loss of a service, and locate another service that may be
connections may be amongst different hardware or softwarsed [46]. One specific set of examples examined service-

C. Self-organization vs. self-configuration



discovery protocols in the presence of communication fagu intervention. For non-masking tolerance, however, repove
[47]. Such a service discovery protocol makes a system seff-hampered due to the lack of progress. One solution is to
healing from communication failures, but does not makmodify the basic design so that progress is not affected &y th
it self-immune. This system maintains or restores a safegversarial action of interest. Most self-stabilizingteyss use
property (a consistent system view) following the a set dhis approach. As an alternative, after a timeout perioco@eh
fault actions (communication failure). However, it does novalue should be larger that the maximum possible response
mask these communication faults over time - if a componetimne), the system has to be internally reset or restarteteddn
fails many times after the system has recovered, the systdm system is fully asynchronous, the use of timeout is a
will continue to be perturbed. common tool for detecting crash and initiating reset.
Although not explicitly mentioned, the restoration of a
system property often accommodates graceful degradation,
Self-immunity safeguards the safety property éyentu- particularly when the system has to deal with the crash of
ally maskinga certain set of external actions, whereas selfrocesses, or loss of resources, or excessive service desman
protectionalways maskghe effects of external actions deemedo what extent a safety predicafecan be allowed to degrade
to be malicious in nature. and still it becomes acceptable to the application, is elytthe
Lemma 7. Every self-protecting system is self-immune, bgltesigner’s choice. For e?(ampIeH corresponds to servicing
the reverse is not true. a number o.f requests in the FIFO order,_ and a weakened
predicateP’ implies servicing the requests in any order, then
However, self-immunity differs in two key ways from self-some applications may accept the substitutionfoby P’.
protection. First, self-immunity allows a system to deyeloAn increase in the space or time complexity by a polylog
masking tolerance over time. The system learns about whahount is widely accepted by the community. However, it is
failures are occuring, and prepares itself to handle theahctalso expected that following a repair (or replacement) of a
faults it may face. Secondly, self-immunity does not applgrashed process, the original safety predicate will beoredt
to malicious actions only - it may provide eventual masking Most definitions still carry with it a certain level of ambi-
tolerance for other actions as well, although it may not kguity by allowing different aspects of the property to deghen
a good choice in the presence of security threats, since thgon the application. This is evidenced by a common phrase
system becomes vulnerable during the learning phase.  from most definitions - “with respect to.” This ambiguity,wo
ever, is unavoidable without creating an exponentialigda
set of self-* properties. Different systems each have diffe
This paper is an attempt to reconcile the various viewpoingat safe configurations, different environments, and dfie
about self-* properties by providing a formal foundationpotential faults. Furthermore, there are an infinite nundder
These properties are all closely related in that each is jusintingencies possible with real-world systems. Theeefby
a special case of self-management. This similarity may Iecessity,any distributed system operates “with respect to”
helpful in expanding the field. For instance, self-stahtiiign a set of limitations. In a way, the goal of self-* computing
has a large existing body of research, and this could usesearch is to widen this “with respect to” set to include enor
to understand things about other new or less studied sel&fid more actual possibilities.
properties. The benefit of using a self-management templatéOne last observation from these definitions is that some
is to explore meaningful self-* properties that may exist isystem attributes are required for certain self-* propsrtbut
this space. not for others. For instance, a system must have a form of
There are many grey areas in such a classification. Note thalf-awareness to compute a utility function, and theefar
we tried to classify adversarial actions into process @sshsystem must be self-aware to be self-optimizing. Conversel
join or leave operations, malicious actions etc. Howevehsua system need not be self-aware to be self-healing - it may
a classification is highly subjective. For example, an astmgr run a healing protocol at periodic intervals regardlesshef t
may crash a sensor node to reduce coverage and caussystem state, which would not require self-awareness. This
security breach, so the crash is essentially a maliciousract observation matches with a previous work on the need for self
A system can have multiple types of self-* properties w.rawareness in grid systems [40]. In general, examining these
different sets of adversarial actions. For example, a systalefinitions can provide insight into necessary and unnacgss
may be self-stabilizing w.r.t. any number of transientueds, attributes of a system design.
but self-immune to at most one failure. A self-organizing
system can also be self-optimizing
So far, we characterized the system property of interest to Bl Amazon, “Amazon elastic ~compute cloud (ec2)” 2009,
. . . http://aws. amazon. conif ec2/ .
a Safety property. A common question is: what if an eXtem"’Xb] imageloop.com, “Slideshows, photos, pictures at in@g@com,” 2009,
action destroys the liveness property, or induces a dele@lloc  http://ww i magel oop. com
Indeed, some types of fail-safe systems prefer to induce [ SnappyFingers, _ “Snappyfingers,” 2009,
deadlock when the consequences of the adversarial acéon http: [/ waw. Snappyfi nger s, com

; oEM ) < "{’II] J. O. Kephart and D. M. Chess, “The vision of autonomic pating,”
damaging to the application: the goal is to solicit human Computer vol. 36, no. 1, pp. 41-50, 2003.

E. Self-immunity vs. self-protection
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