Sorting Analysis
Average Case Insertion Sort

Average number of comparisons to insert a value into a sorted array containing n values:

\[
\frac{1}{n+1} \sum_{i=1}^{n+1} i = \frac{1}{n+1} \left(\frac{(n+1)(n+2)}{2} \right) = \frac{n+2}{2}
\]
Average number of comparisons to sort an array of n values using an insertion sort:

\[
\frac{n-1}{2} \cdot \frac{c + 2}{2} = \frac{1}{2} \sum_{c=1}^{n-1} (c+2) = \frac{1}{2} \left(\sum_{c=1}^{n-1} c + \sum_{c=1}^{n-1} 2 \right) = \frac{1}{2} \left(\frac{n(n-1)}{2} + 2(n-1) \right) = \frac{n(n-1)}{4} + (n-1)
\]
Merge Sort Analysis (n is a power of 2)

Recurrence Relation for Merge Sort

\[T(n) = 2T(n/2) + n \]

How to solve?

Restructure the equation so terms cancel

Divide by sides by \(n \)

\[\frac{T(n)}{n} = \frac{2T(n/2) + 1}{n} \]

\[\frac{T(n)}{n} = \frac{T(n/2)}{n/2} + 1 \]
Merge Sort Analysis (n is a power of 2)

Let's assume \(n \) is a power of 2.

\[
\begin{align*}
T(n) &= T(n/2) + 1 \\
T(n/2) &= T(n/4) + 1 \\
T(n/4) &= T(n/8) + 1 \\
&\vdots \\
T(2) &= T(1) + 1
\end{align*}
\]
Merge Sort Analysis (n is a power of 2)

Set the sum of the LHS equal to the sum of the RHS and cancel common terms.

Since n is a power of 2 there are $\log_2 n$ equations and thus $\log_2 n$ of 1s

$$\frac{T(n)}{n} = T(1) + \log_2 n$$

$$T(n) = nT(1) + n\log_2 n = n + n\log_2 n$$
QuickSort Analysis

Recurrence relation

\[T(0) = T(1) = 1 \]

\[T(N) = T(i) + T(N-i-1) + N, \text{ for } N > 1 \]
QuickSort Analysis

Worst Case Analysis

\[T(N) = T(N-1) + N, \text{ for } N > 1 \]

Telescope the equation

\[T(N) = T(N-1) + N \]
\[T(N-1) = T(N-2) + (N-1) \]
\[T(N-2) = T(N-3) + (N-2) \]
\[\vdots \]
\[T(2) = T(1) + 2 \]

Sum the equations and cancel matching terms in the left and right resulting

\[T(N) = T(1) + N + (N-1) + \ldots + 2 \]
QuickSort Analysis

Best Case

\[T(N) = 2T(N/2) + N, \text{ for } N > 1 \]

This can be solved the same way we solved the recurrence relation for merge sort.
QuickSort Analysis

Average case

Average the recurrence equation for all possible values of \(l \) (all possible locations of the pivot element)

\[
\frac{1}{N} \sum (T(i) + T(N-i-1)) + N
\]

See textbook for a solution