Query Processing Basics

- Query Execution Plan
- Basic Algorithms
 - External Sorting
 - Computing Projections
 - Computing Selection
 - Computing Joins

External Sorting

- Partial Sorting
- K-way merging
- Sorting cost
 - Dominated by I/O
 - Suppose a table with F pages and M in memory page buffers
 - Partial Sort Cost
 - 2F pages operations (F reads and F writes)
 - Produces ceiling(F/M) sorted sequences

External Sorting Cost

- K-way Merge
- ceiling(F/M) sorted sequences after partial sort
- Usually will require multiple passes
- Cost to Partial Sort and Merge into 1 sorted sequence
 - $2F \times \text{ceiling}(\log_{M-1} F)$
External Sort Cost Example

- Suppose a table with 10,000 pages and 10 page in memory buffers
- Partial sort
 - 2*10,000 page accesses
 - 1000 sorted sequences
- First Merge
 - Merge 9 sequences at a time
 - ceiling(1000/9) sequences

Second Merge Phase
- ceiling(112/9) sequences
- 13 sequences

Third Merge Phase
- ceiling(13/9) sequences
- 2 sequences

Fourth Merge Phase
- ceiling(2/9) = 1

Total costs
- Each merge phase costs 2F
- Partial sort costs + Merge costs
- 2F + 4*2F = 10F
- 10*10000 pages accesses

Formula estimate
- 2*10000* ceiling(log₉10000)
- 10*10000 pages accesses

Computing Projection

- Duplicates allowed
 - Scan table keep attributes
 - If F pages in table then F reads + F or less writes

- Duplicates not allowed (Distinct)
 - Sort-based projections
 - Sort and remove duplicates at write of last merge phase
 - Cost same as sorting
 - Hash-based projections
 - Hash into buckets, remove duplicates in each bucket
 - Cost is 4F assume the bucket fits in memory (usually the case)
Computing Selection

• Selection with simple conditions
 - $\sigma_{\text{attr op value}}^R$
 - No index
 - Scan
 - Binary search
 - B+Tree index
 - Search for B+Tree node where attr = value and scan leaves based on the operator
 - Clustered or unclustered index
 - Hash index
 - Only works for attr = value

Access Paths

• Data structures and algorithms to do search
 - File scan
 - Binary search
 - Indexes
• An access path can Cover a relational expression
• Selectivity of access paths
 - In general choose the most selective access path

Computing Selection

• Selection with complex conditions
 - Selections with conjunctive conditions
 • Use the most selective access path
 - Scan the tuples returned by that access path
 - The access path chosen depends on the indexes available
 • Use multiple access paths
 - Use intersection of the tuples returned by all access paths
 - Selections with disjunctive conditions
 • Convert to disjunctive normal form
 • If all disjuncts have better access path than scan, use them otherwise scan

Selection Problem

• Suppose you have a relation R with the following characteristics:
 - 5,000 tuples with 10 tuples per page
 - A 2-level B+tree index on attribute A with up to 100 index entries per page
 - Attribute A is a candidate key of R
 - The values of A are uniformly distributed in the range 1 to 100,000
• a. If the index is unclustered, how many disk accesses are needed to compute the result of $\sigma_{(A > 2000 \text{ AND } A < 6000)}^R$?
• b. How many disk accesses are required to compute the result of the query if the index is clustered?
Computing Joins

- Simple nested loops
- Block-nested loops
- Index nested loops

Simple Nested Loop

- \(R \bowtie_{A=B} S \)
- foreach \(t \in R \) do
 - foreach \(v \in S \) do
 - if \(t.A = v.B \) then output \((t,v)\)
- Let \(F_R \) and \(F_S \) be the number of pages in \(R \) and \(S \) respectively
- Let \(N_R \) and \(N_S \) be the number of rows in \(R \) and \(S \) respectively
- Cost is \(F_R + N_R \cdot F_S \)
 - The order of the loop matters
 - What if \(N_R > N_S \)?
- Cost of output?

Simple Nested Loop Join Problem

- Suppose you have relations \(R \) and \(S \) with the following characteristics:
 - \(R \) has 800 pages with 20 rows per page
 - \(S \) has 200 pages with 10 rows per page
- How many disk reads are done to compute \(R \bowtie_{R.A=S.B} S \) using a simple nested loop?

Block-nested Loops

- \(R \bowtie_{A=B} S \)
- foreach page \(p_r \) of \(R \) do
 - foreach page \(p_s \) of \(S \) do
 - output \(p_r \bowtie_{A=B} p_s \)
- Cost
 - \(F_R + F_R \cdot F_S \)
- Improvement using more buffer space
 - Assume \(M \) page buffers are available
 - Read \(M-2 \) page from \(R \) and join with a page from \(S \)
 - \(F_R + F_S \cdot \text{ceiling}(F_R/(M-2)) \)
Block Nested Loop Join Problem

- Suppose you have relations R and S with the following characteristics:
 - R has 800 pages with 20 rows per page
 - S has 200 pages with 10 rows per page
 - Main memory has 52 page buffers

- How many disk reads are done to compute \(R \bowtie_{A=B} S \) using a block nested loop?

Index-nested Loop

- \(R \bowtie_{A=B} S \)
- foreach \(t \in R \)
 - use the index on B to find all the tuples \(v \in S \) such that \(t.A = v.B \)
 - output \((t,v) \) for each such \(v \)

- Cost examples
 - Clustered B+tree (height \(h \)) index on B in S
 - \(F_R + ((h+1)+1) \times N_R \)

Index Nested Loop Join Problem

- Suppose you have relations R and S with the following characteristics:
 - R has 800 pages with 20 rows per page
 - S has 200 pages with 10 rows per page
 - A height 3 Clustered B+tree Index on R.A

- How many disk reads are done to compute \(R \bowtie_{A=B} S \) using an index nested loop?