DNS: domain name system

people: many identifiers:
- SSN, name, passport

Internet hosts, routers:
- IP address (32 bit) - used for addressing datagrams
- “name”, e.g., www.yahoo.com - used by humans

Q: how to map between IP address and name, and vice versa?

Domain Name System:
- *distributed database* implemented in hierarchy of many *name servers*
- *application-layer protocol:* hosts, name servers communicate to *resolve* names (address/name translation)
 - note: core Internet function, implemented as application-layer protocol
 - complexity at network’s “edge”
DNS: services, structure

DNS services
- hostname to IP address translation
- host aliasing
 - canonical, alias names
- mail server aliasing
- load distribution
 - replicated Web servers: many IP addresses correspond to one name

why not centralize DNS?
- single point of failure
- traffic volume
- distant centralized database
- maintenance

A: *doesn’t scale!*
DNS: a distributed, hierarchical database

Client wants IP for www.amazon.com; 1st approx:

- client queries root server to find com DNS server
- client queries .com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com
DNS: root name servers

- contacted by local name server that can not resolve name
- root name server:
 - contacts authoritative name server if name mapping not known
 - gets mapping
 - returns mapping to local name server

13 root name “servers” worldwide

- a. Verisign, Los Angeles CA (5 other sites)
- b. USC-ISI Marina del Rey, CA
- c. Cogent, Herndon, VA (5 other sites)
- d. U Maryland College Park, MD
- e. NASA Mt View, CA
- f. Internet Software C. Palo Alto, CA (and 48 other sites)
- g. US DoD Columbus, OH (5 other sites)
- h. ARL Aberdeen, MD
- i. Netnod, Stockholm (37 other sites)
- j. Verisign, Dulles VA (69 other sites)
- k. RIPE London (17 other sites)
- l. ICANN Los Angeles, CA (41 other sites)
- m. WIDE Tokyo (5 other sites)
TLD, authoritative servers

top-level domain (TLD) servers:
– responsible for com, org, net, edu, aero, jobs, museums, and all top-level country domains, e.g.: uk, fr, ca, jp
– Network Solutions maintains servers for .com TLD
– Educause for .edu TLD

authoritative DNS servers:
– organization’s own DNS server(s), providing authoritative hostname to IP mappings for organization’s named hosts
– can be maintained by organization or service provider
Local DNS name server

- does not strictly belong to hierarchy
- each ISP (residential ISP, company, university) has one
 - also called “default name server”
- when host makes DNS query, query is sent to its local DNS server
 - has local cache of recent name-to-address translation pairs (but may be out of date!)
 - acts as proxy, forwards query into hierarchy
DNS name resolution example

- host at cis.poly.edu wants IP address for gaia.cs.umass.edu

iterated query:
- contacted server replies with name of server to contact
- “I don’t know this name, but ask this server”
DNS name resolution example

recursive query:
- puts burden of name resolution on contacted name server
- heavy load at upper levels of hierarchy?

Diagram:
- Requesting host: `cis.poly.edu`
- Local DNS server: `dns.poly.edu`
- Authoritative DNS server: `dns.cs.umass.edu`
- TLD DNS server
- Root DNS server

Steps:
1. Requesting host queries local DNS server.
2. Local DNS server queries root DNS server.
3. Root DNS server queries TLD DNS server.
4. TLD DNS server queries authoritative DNS server.
5. Authoritative DNS server returns response to TLD DNS server.
6. TLD DNS server returns response to root DNS server.
7. Root DNS server returns response to local DNS server.
8. Local DNS server returns response to requesting host.
DNS: caching, updating records

- once (any) name server learns mapping, it caches mapping
 - cache entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
 - thus root name servers not often visited

- cached entries may be out-of-date (best effort name-to-address translation!)
 - if name host changes IP address, may not be known Internet-wide until all TTLs expire

- update/notify mechanisms proposed IETF standard
 - RFC 2136
DNS records

DNS: distributed db storing resource records (RR)

RR format: \((\text{name}, \text{value}, \text{type}, \text{ttl})\)

- **type=NS**
 - \text{name} is domain (e.g., foo.com)
 - \text{value} is hostname of authoritative name server for this domain

- **type=A**
 - \text{name} is hostname
 - \text{value} is IP address

- **type=CNAME**
 - \text{name} is alias name for some “canonical” (the real) name
 - \text{www.ibm.com} is really servereast.backup2.ibm.com
 - \text{value} is canonical name

- **type=MX**
 - \text{value} is name of mailserver associated with \text{name}
DNS protocol, messages

- **query** and **reply** messages, both with same *message format*

msg header
- **identification**: 16 bit # for query, reply to query uses same #
- **flags**:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

<table>
<thead>
<tr>
<th>identification</th>
<th>flags</th>
</tr>
</thead>
<tbody>
<tr>
<td># questions</td>
<td># answer RRs</td>
</tr>
<tr>
<td># authority RRs</td>
<td># additional RRs</td>
</tr>
<tr>
<td>questions (variable # of questions)</td>
<td></td>
</tr>
<tr>
<td>answers (variable # of RRs)</td>
<td></td>
</tr>
<tr>
<td>authority (variable # of RRs)</td>
<td></td>
</tr>
<tr>
<td>additional info (variable # of RRs)</td>
<td></td>
</tr>
</tbody>
</table>
DNS protocol, messages

<table>
<thead>
<tr>
<th>identification</th>
<th>flags</th>
</tr>
</thead>
<tbody>
<tr>
<td># questions</td>
<td># answer RRs</td>
</tr>
<tr>
<td># authority RRs</td>
<td># additional RRs</td>
</tr>
<tr>
<td>questions (variable # of questions)</td>
<td>answers (variable # of RRs)</td>
</tr>
<tr>
<td></td>
<td>authority (variable # of RRs)</td>
</tr>
<tr>
<td></td>
<td>additional info (variable # of RRs)</td>
</tr>
</tbody>
</table>

- **name, type fields** for a query
- **RRs in response to query**
- **records for authoritative servers**
- **additional “helpful” info that may be used**

- DNS protocol, messages
- 2 bytes
- 2 bytes
Inserting records into DNS

- example: new startup “Network Utopia”
- register name networkuptopia.com at DNS registrar (e.g., Network Solutions)
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts two RRs into .com TLD server:
 (networkutopia.com, dns1.networkutopia.com, NS)
 (dns1.networkutopia.com, 212.212.212.1, A)
- create authoritative server type A record for www.networkuptopia.com; type MX record for networkutopia.com
Attacking DNS

DDoS attacks

- Bombard root servers with traffic
 - Not successful to date
 - Traffic Filtering
 - Local DNS servers cache IPs of TLD servers, allowing root server bypass

- Bombard TLD servers
 - Potentially more dangerous

Redirect attacks

- Man-in-middle
 - Intercept queries
- DNS poisoning
 - Send bogus replies to DNS server, which caches

Exploit DNS for DDoS

- Send queries with spoofed source address: target IP
- Requires amplification